
Package: bspline (via r-universe)
August 31, 2024

Type Package

Title B-Spline Interpolation and Regression

Version 2.2.2

Author Serguei Sokol <sokol@insa-toulouse.fr>

Maintainer Serguei Sokol <sokol@insa-toulouse.fr>

Description Build and use B-splines for interpolation and regression.
In case of regression, equality constraints as well as
monotonicity and/or positivity of B-spline weights can be
imposed. Moreover, knot positions (not only spline weights) can
be part of optimized parameters too. For this end, 'bspline' is
able to calculate Jacobian of basis vectors as function of knot
positions. User is provided with functions calculating spline
values at arbitrary points. These functions can be
differentiated and integrated to obtain B-splines calculating
derivatives/integrals at any point. B-splines of this package
can simultaneously operate on a series of curves sharing the
same set of knots. 'bspline' is written with concern about
computing performance that's why the basis and Jacobian
calculation is implemented in C++. The rest is implemented in R
but without notable impact on computing speed.

URL https://github.com/MathsCell/bspline

BugReports https://github.com/MathsCell/bspline/issues

License GPL-2

Encoding UTF-8

Imports Rcpp (>= 1.0.7), nlsic (>= 1.0.2), arrApply

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.3.1

Suggests RUnit

Copyright INRAE/INSA/CNRS

Repository https://mathscell.r-universe.dev

1

https://github.com/MathsCell/bspline
https://github.com/MathsCell/bspline/issues

2 bcurve

RemoteUrl https://github.com/mathscell/bspline

RemoteRef HEAD

RemoteSha a1dffa08590a29cbdf825e2200256e4a7013406a

Contents
bcurve . 2
bsc . 3
bsp . 4
bspline . 5
bsppar . 6
dbsp . 6
diffn . 7
dmat . 8
ibsp . 8
iknots . 9
ipk . 10
jacw . 10
par2bsp . 11
parr . 11
pbsc . 12
smbsp . 13

Index 16

bcurve nD B-curve governed by (x,y,...) control points.

Description

nD B-curve governed by (x,y,...) control points.

Usage

bcurve(xy, n = 3)

Arguments

xy Real matrix of (x,y,...) coordinates, one control point per row.

n Integer scalar, polynomial order of B-spline (3 by default)

Details

The curve will pass by the first and the last points in ’xy’. The tangents at the first and last points
will coincide with the first and last segments of control points. Example of signature is inspired
from this blog.

https://www.r-bloggers.com/2023/03/little-useless-useful-r-functions-using-xspline-to-create-wacky-signatures/

bsc 3

Value

Function of one argument calculating B-curve. The argument is supposed to be in [0, 1] interval.

Examples

simulate doctor's signature ;)
set.seed(71);
xy=matrix(rnorm(16), ncol=2)
tp=seq(0,1,len=301)
doc_signtr=bcurve(xy)
plot(doc_signtr(tp), t="l", xaxt='n', yaxt='n', ann=FALSE, frame.plot=FALSE,

xlim=range(xy[,1]), ylim=range(xy[,2]))
see where control points are
text(xy, labels=seq(nrow(xy)), col=rgb(0, 0, 0, 0.25))
join them by segments
lines(bcurve(xy, n=1)(tp), col=rgb(0, 0, 1, 0.25))

randomly curved wire in 3D space
Not run:

if (requireNamespace("rgl", quietly=TRUE)) {
xyz=matrix(rnorm(24),ncol=3)
tp=seq(0,1,len=201)
curv3d=bcurve(xyz)
rgl::plot3d(curv3d(tp), t="l", decorate=FALSE)

}

End(Not run)

bsc Basis matrix and knot Jacobian for B-spline of order 0 (step function)
and higher

Description

This function is analogous but not equivalent to splines:bs() and splines2::bSpline(). It is
also several times faster.

Usage

bsc(x, xk, n = 3L, cjac = FALSE)

Arguments

x Numeric vector, abscissa points

xk Numeric vector, knots

n Integer scalar, polynomial order (3 by default)

cjac Logical scalar, if TRUE makes to calculate Jacobian of basis vectors as function
of knot positions (FALSE by default)

4 bsp

Details

For n==0, step function is defined as constant on each interval [xk[i]; xk[i+1][, i.e. closed on the
left and open on the right except for the last interval which is closed on the right too. The Jacobian
for step function is considered 0 in every x point even if in points where x=xk, the derivative is not
defined.
For n==1, Jacobian is discontinuous in such points so for these points we take the derivative from
the right.

Value

Numeric matrix (for cjac=FALSE), each column correspond to a B-spline calculated on x; or List
(for cjac=TRUE) with components

mat basis matrix of dimension nx x nw, where nx is the length of x and nw=nk-n-1 is the number
of basis vectors

jac array of dimension nx x (n+2) x nw where n+2 is the number of support knots for each basis
vector

See Also

[splines::bs()], [splines2::bSpline()]

Examples

x=seq(0, 5, length.out=101)
cubic basis matrix
n=3
m=bsc(x, xk=c(rep(0, n+1), 1:4, rep(5, n+1)), n=n)
matplot(x, m, t="l")
stopifnot(all.equal.numeric(c(m), c(splines::bs(x, knots = 1:4, degree = n, intercept = TRUE))))

bsp Calculate B-spline values from their coefficients qw and knots xk

Description

Calculate B-spline values from their coefficients qw and knots xk

Usage

bsp(x, xk, qw, n = 3L)

bspline 5

Arguments

x Numeric vector, abscissa points at which B-splines should be calculated. They
are supposed to be non decreasing.

xk Numeric vector, knots of the B-splines. They are supposed to be non decreasing.

qw Numeric vector or matrix, coefficients of B-splines. NROW(qw) must be equal to
length(xk)-n-1 where n is the next parameter

n Integer scalar, polynomial order of B-splines, by default cubic splines are calcu-
lated.

Details

This function does nothing else than calculate a dot-product between a B-spline basis matrix cal-
culated by bsc() and coefficients qw. If qw is a matrix, each column corresponds to a separate set
of coefficients. For x values falling outside of xk range, the B-splines values are set to 0. To get a
function calculating spline values at arbitrary points from xk and qw, cf. par2bsp().

Value

Numeric matrix (column number depends on qw dimensions), B-spline values on x.

See Also

[bsc], [par2bsp]

bspline bspline: build and use B-splines for interpolation and regression.

Description

Build and use B-splines for interpolation and regression. In case of regression, equality constraints
as well as monotonicity requirement can be imposed. Moreover, knot positions (not only spline
coefficients) can be part of optimized parameters too. User is provided with functions calculating
spline values at arbitrary points. This functions can be differentiated to obtain B-splines calculating
derivatives at any point. B-splines of this package can simultaneously operate on a series of curves
sharing the same set of knots. ’bspline’ is written with concern about computing performance that’s
why the basis calculation is implemented in C++. The rest is implemented in R but without notable
impact on computing speed.

bspline functions

"bsc:" basis matrix (implemented in C++)

"bsp:" values of B-spline from its coefficients

"dbsp:" derivative of B-spline

"par2bsp:" build B-spline function from parameters

"bsppar:" retrieve B-spline parameters from its function

6 dbsp

"smbsp:" build smoothing B-spline

"fitsmbsp:" build smoothing B-spline with optimized knot positions

"diffn:" finite differences

See Also

Useful links:

• https://github.com/MathsCell/bspline

• Report bugs at https://github.com/MathsCell/bspline/issues

bsppar Retrieve parameters of B-splines

Description

Retrieve parameters of B-splines

Usage

bsppar(f)

Arguments

f Function, B-splines such that returned by par3bsp(), smbsp(), ...

Value

List having components: n - polynomial order, qw - coefficients, xk - knots

dbsp Derivative of B-spline

Description

Derivative of B-spline

Usage

dbsp(f, nderiv = 1L, same_xk = FALSE)

https://github.com/MathsCell/bspline
https://github.com/MathsCell/bspline/issues

diffn 7

Arguments

f Function, B-spline such as returned by smbsp() or par2bsp()

nderiv Integer scalar >= 0, order of derivative to calculate (1 by default)

same_xk Logical scalar, if TRUE, indicates to calculate derivative on the same knot grid
as original function. In this case, coefficient number will be incremented by 2.
Otherwise, extreme knots are removed on each side of the grid and coefficient
number is maintained (FALSE by default).

Value

Function calculating requested derivative

Examples

x=seq(0., 1., length.out=11L)
y=sin(2*pi*x)
f=smbsp(x, y, nki=2L)
d_f=dbsp(f)
xf=seq(0., 1., length.out=101) # fine grid for plotting
plot(xf, d_f(xf)) # derivative estimated by B-splines
lines(xf, 2.*pi*cos(2*pi*xf), col="blue") # true derivative
xk=bsppar(d_f)$xk
points(xk, d_f(xk), pch="x", col="red") # knot positions

diffn Finite differences

Description

Calculate dy/dx where x,y are first and the rest of columns in the entry matrix ’m’

Usage

diffn(m, ndiff = 1L)

Arguments

m 2- or more-column numeric matrix

ndiff Integer scalar, order of finite difference (1 by default)

Value

Numeric matrix, first column is midpoints of x, the second and following are dy/dx

8 ibsp

dmat Differentiation matrix

Description

Calculate matrix for obtaining coefficients of first-derivative B-spline. They can be calculated as
dqw=Md %*% qw. Here, dqw are coefficients of the first derivative, Md is the matrix returned by this
function, and qw are the coefficients of differentiated B-spline.

Usage

dmat(nqw = NULL, xk = NULL, n = NULL, f = NULL, same_xk = FALSE)

Arguments

nqw Integer scalar, row number of qw matrix (i.e. degree of freedom of a B-spline)

xk Numeric vector, knot positions

n Integer scalar, B-spline polynomial order

f Function from which previous parameters can be retrieved. If both f and any
of previous parameters are given then explicitly set parameters take precedence
over those retrieved from f.

same_xk Logical scalar, the same meaning as in dbsp

Value

Numeric matrix of size nqw-1 x nqw

ibsp Indefinite integral of B-spline

Description

Indefinite integral of B-spline

Usage

ibsp(f, const = 0, nint = 1L)

Arguments

f Function, B-spline such as returned by smbsp() or par2bsp()

const Numeric scalar or vector of length ncol(qw) where qw is weight matrix of f.
Defines starting value of weights for indefinite integral (0 by default).

nint Integer scalar >= 0, defines how many times to take integral (1 by default)

iknots 9

Details

If f is B-spline, then following identity is held: Dbsp(ibsp(f)) is identical to f. Generally, it does not
work in the other sens: ibsp(Dbsp(f)) is not f but not very far. If we can get an appropriate constant
C=f(min(x)) then we can assert that ibsp(Dbsp(f), const=C) is the same as f.

Value

Function calculating requested integral

iknots Estimate internal knot positions equalizing jumps in n-th derivative

Description

Normalized total variation of n-th finite differences is calculated for each column in y then averaged.
These averaged values are fitted by a linear spline to find knot positions that equalize the jumps of
n-th derivative.
NB. This function is used internally in (fit)smbsp() and a priori has no interest to be called
directly by user.

Usage

iknots(x, y, nki = 1L, n = 3L)

Arguments

x Numeric vector

y Numeric vector or matrix

nki Integer scalar, number of internal knots to estimate (1 by default)

n Integer scalar, polynomial order of B-spline (3 by default)

Value

Numeric vector, estimated knot positions

10 jacw

ipk Intervals of points in knot intervals

Description

Find first and last+1 indexes iip s.t. x[iip] belongs to interval starting at xk[iik]

Usage

ipk(x, xk)

Arguments

x Numeric vector, abscissa points (must be non decreasing)

xk Numeric vector, knots (must be non decreasing)

Value

Integer matrix of size (2 x length(xk)-1). Indexes are 0-based

jacw Knot Jacobian of B-spline with weights

Description

Knot Jacobian of B-spline with weights

Usage

jacw(jac, qws)

Arguments

jac Numeric array, such as returned by bsc(..., cjac=TRUE)

qws Numeric matrix, each column is a set of weights forming a B-spline. If qws is a
vector, it is coerced to 1-column matrix.

Value

Numeric array of size nx x ncol(qw) x nk, where nx=dim(jac)[1] and nk is the number of knots
dim(jac)[3]+n+1 (n being polynomial order).

par2bsp 11

par2bsp Convert parameters to B-spline function

Description

Convert parameters to B-spline function

Usage

par2bsp(n, qw, xk, covqw = NULL, sdy = NULL, sdqw = NULL)

Arguments

n Integer scalar, polynomial order of B-splines

qw Numeric vector or matrix, coefficients of B-splines, one set per column in case
of matrix

xk Numeric vector, knots

covqw Numeric Matrix, covariance matrix of qw (can be estimated in smbsp).

sdy Numeric vector, SD of each y column (can be estimated in smbsp).

sdqw Numeric Matrix, SD of qw thus having the same dimension as qw (can be esti-
mated in smbsp).

Value

Function, calculating B-splines at arbitrary points and having interface f(x, select) where x is a
vector of abscissa points. Parameter select is passed to qw[, select, drop=FALSE] and can be
missing. This function will return a matrix of size length(x) x ncol(qw) if select is missing.
Elsewhere, a number of column will depend on select parameter. Column names in the result
matrix will be inherited from qw.

parr Polynomial formulation of B-spline

Description

Polynomial formulation of B-spline

Usage

parr(xk, n = 3L)

Arguments

xk Numeric vector, knots

n Integer scalar, polynomial order (3 by default)

12 pbsc

Value

Numeric 3D array, the first index runs through n+1 polynomial coefficients; the second – through
n+1 supporting intervals; and the last one through nk-n-1 B-splines (here nk=length(xk)). Knot
interval of length 0 will have corresponding coefficients set to 0.

pbsc Polynomial B-spline Calculation of Basis Matrix

Description

Polynomial B-spline Calculation of Basis Matrix

Usage

pbsc(x, xk, coeffs)

Arguments

x Numeric,vector, abscissa points

xk Numeric vector, knots

coeffs Numeric 3D array, polynomial coefficients such as calculated by parr

Details

Polynomials are calculated recursively by Cox-de Boor formula. However, it is not applied to
final values but to polynomial coefficients. Multiplication by a linear functions gives a raise of
polynomial degree by 1.
Polynomial coefficients stored in the first dimension of coeffs are used as in the following formula
p[1]*x^n + p[1]*x^(n-1) + ... + p[n+1].
Resulting matrix is the same as returned by bsc(x, xk, n=dim(coeffs)[1]-1)

Value

Numeric matrix, basis vectors, one per column. Row number is length(x).

See Also

bsc

Examples

n=3
x=seq(0, 5, length.out=101)
xk=c(rep(0, n+1), 1:4, rep(5, n+1))
cubic polynomial coefficients
coeffs=parr(xk)
basis matrix

smbsp 13

m=pbsc(x, xk, coeffs)
matplot(x, m, t="l")
stopifnot(all.equal.numeric(c(m), c(bsc(x, xk))))

smbsp Smoothing B-spline of order n >= 0

Description

Optimize smoothing B-spline coefficients (smbsp) and knot positions (fitsmbsp) such that residual
squared sum is minimized for all y columns.

Usage

smbsp(
x,
y,
n = 3L,
xki = NULL,
nki = 1L,
lieq = NULL,
monotone = 0,
positive = 0,
mat = NULL,
estSD = FALSE,
tol = 1e-10

)

fitsmbsp(
x,
y,
n = 3L,
xki = NULL,
nki = 1L,
lieq = NULL,
monotone = 0,
positive = 0,
control = list(),
estSD = FALSE,
tol = 1e-10

)

Arguments

x Numeric vector, abscissa points

y Numeric vector or matrix or data.frame, ordinate values to be smoothed (one set
per column in case of matrix or data.frame)

14 smbsp

n Integer scalar, polynomial order of B-splines (3 by default)

xki Numeric vector, strictly internal B-spline knots, i.e. lying strictly inside of x
bounds. If NULL (by default), they are estimated with the help of iknots().
This vector is used as initial approximation during optimization process. Must
be non decreasing if not NULL.

nki Integer scalar, internal knot number (1 by default). When nki==0, it corresponds
to polynomial regression. If xki is not NULL, this parameter is ignored.

lieq List, equality constraints to respect by the smoothing spline, one list item per y
column. By default (NULL), no constraint is imposed. Constraints are given as
a 2-column matrix (xe, ye) where for each xe, an ye value is imposed. If a list
item is NULL, no constraint is imposed on corresponding y column.

monotone Numeric scalar or vector, if monotone > 0, resulting B-spline weights must be
increasing; if monotone < 0, B-spline weights must be decreasing; if monotone
== 0 (default), no constraint on monotonicity is imposed. If ’monotone’ is a
vector it must be of length ncol(y), in which case each component indicates
the constraint for corresponding column of y.

positive Numeric scalar, if positive > 0, resulting B-spline weights must be >= 0; if
positive < 0, B-spline weights must be decreasing; if positive == 0 (default),
no constraint on positivity is imposed. If ’positive’ is a vector it must be of
length ncol(y), in which case each component indicates the constraint for cor-
responding column of y.

mat Numeric matrix of basis vectors, if NULL it is recalculated by bsc(). If pro-
vided, it is the responsibility of the user to ensure that this matrix be adequate to
xki vector.

estSD Logical scalar, if TRUE, indicates to calculate: SD of each y column, covariance
matrix and SD of spline coefficients. All these values can be retrieved with
bsppar() call (FALSE by default). These estimations are made under assumption
that all y points have uncorrelated noise. Optional constraints are not taken into
account of SD.

tol Numerical scalar, relative tolerance for small singular values that should be con-
sidered as 0 if s[i] <= tol*s[1]. This parameter is ignored if estSD=FALSE
(1.e-10 by default).

control List, passed through to nlsic() call

Details

If constraints are set, we use nlsic::lsie_ln() to solve a least squares problem with equality
constraints in least norm sens for each y column. Otherwise, nlsic::ls_ln_svd() is used for the
whole y matrix. The solution of least squares problem is a vector of B-splines coefficients qw, one
vector per y column. These vectors are used to define B-spline function which is returned as the
result.

NB. When nki >= length(x)-n-1 (be it from direct setting or calculated from length(xki)), it
corresponds to spline interpolation, i.e. the resulting spline will pass exactly by (x,y) points (well,
up to numerical precision).

smbsp 15

Border and external knots are fixed, only strictly internal knots can move during optimization. The
optimization process is constrained to respect a minimal distance between knots as well as to bound
them to x range. This is done to avoid knots getting unsorted during iterations and/or going outside
of a meaningful range.

Value

Function, smoothing B-splines respecting optional constraints (generated by par2bsp()).

See Also

bsppar for retrieving parameters of B-spline functions; par2bsp for generating B-spline function;
iknots for estimation of knot positions

Examples

x=seq(0, 1, length.out=11)
y=sin(pi*x)+rnorm(x, sd=0.1)
constraint B-spline to be 0 at the interval ends
fsm=smbsp(x, y, nki=1, lieq=list(rbind(c(0, 0), c(1, 0))))
check parameters of found B-splines
bsppar(fsm)
plot(x, y) # original "measurements"
fine grained x
xfine=seq(0, 1, length.out=101)
lines(xfine, fsm(xfine)) # fitted B-splines
lines(xfine, sin(pi*xfine), col="blue") # original function
visualize knot positions
xk=bsppar(fsm)$xk
points(xk, fsm(xk), pch="x", col="red")
fit broken line with linear B-splines
x1=seq(0, 1, length.out=11)
x2=seq(1, 3, length.out=21)
x3=seq(3, 4, length.out=11)
y1=x1+rnorm(x1, sd=0.1)
y2=-2+3*x2+rnorm(x2, sd=0.1)
y3=4+x3+rnorm(x3, sd=0.1)
x=c(x1, x2, x3)
y=c(y1, y2, y3)
plot(x, y)
f=fitsmbsp(x, y, n=1, nki=2)
lines(x, f(x))

Index

bcurve, 2
bsc, 3, 12
bsp, 4
bspline, 5
bspline-package (bspline), 5
bsppar, 6

dbsp, 6, 8
diffn, 7
dmat, 8

fitsmbsp (smbsp), 13

ibsp, 8
iknots, 9
ipk, 10

jacw, 10

par2bsp, 11
parr, 11, 12
pbsc, 12

smbsp, 11, 13

16

	bcurve
	bsc
	bsp
	bspline
	bsppar
	dbsp
	diffn
	dmat
	ibsp
	iknots
	ipk
	jacw
	par2bsp
	parr
	pbsc
	smbsp
	Index

